Sulfur dioxide: a physiologic endothelium-derived relaxing factor.
نویسندگان
چکیده
The gasotransmitter nitric oxide was classified as the first endothelium-derived relaxant factor, and opened a new era in cardiovascular research. Another small gas, sulfur dioxide (SO₂), can also be generated endogenously in mammals. Recent studies have shown that SO₂ may play important roles in the cardiovascular system. At low concentrations, the vasodilatory effect of SO₂ is endothelium-dependent. The vasodilation induced by an endothelium-derived relaxant factor is achieved by the opening of potassium channels, and hyperpolarization of the membranes of vascular smooth muscle cells. This feature is in accordance with that of SO₂. The vasodilatory effect of SO₂ is related to the opening of adenosine triphosphate-sensitive potassium channels and high-conductance calcium-activated potassium channels. The 3'-5'-cyclic guanosine monophosphate pathway and activation of nitric oxide synthase are also involved in the endothelium-derived relaxant factor effect of SO₂. The vasodilatory effect of gaseous SO₂ is much stronger than that of its derivatives (bisulfite and sulfite). It is suggested that SO₂ may be a candidate endothelium-derived relaxant factor, which could lead to a new era of research into cardiovascular disease in mammals.
منابع مشابه
The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation
Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...
متن کاملEndothelium-derived relaxing factors. A perspective from in vivo data.
We review below published studies of endothelium-dependent vasodilation in vivo. Endothelium-dependent vasodilation has been demonstrated in conduit arteries in vivo and in the cerebral, coronary, mesenteric, and femoral vascular beds as well as in the microcirculation of the brain and the microcirculation of cremaster muscle. The available evidence, although not complete, strongly suggests tha...
متن کاملA Perspective From In Vivo Data
We review below published studies of endothelium-dependent vasodilation in vivo. Endothelium-dependent vasodilation has been demonstrated in conduit arteries in vivo and in the cerebral, coronary, mesenteric, and femoral vascular beds as well as in the microcirculation of the brain and the microcirculation of cremaster muscle. The available evidence, although not complete, strongly suggests tha...
متن کاملEffect of Aqueous Garlic (Allium sativum L.) Extract on Acetylcholine and Isosorbide-Induced Relaxation of Isolated Aorta in Rat
The hypotensive effect of garlic has been well-documented in human subjects and animals. Since endothelial activity regulates vascular reactivity in physiological and pathophysiological conditions, the aim of the present study was to investigate the effect of garlic on endothelium-dependent and independent relaxation of rat aorta for elucidation of mechanism of the garlic anti-hypertensive effe...
متن کاملSuperoxide anions and hyperoxia inactivate endothelium-derived relaxing factor.
Experiments were designed to determine the effects of oxygen-derived free radicals on the production and biological activity of endothelium-derived relaxing factor or factors released by acetylcholine. Rings of canine coronary arteries without endothelium (bioassay rings) were superfused with solution passing through a canine femoral artery with endothelium. Superoxide dismutase caused maximal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2017